

Knowledge Graphs can play together: Addressing knowledge graph alignment from ontologies in the biomedical domain

Hanna Abi Akl, Dominique Mariko, Yann-Alan Pilatte, Stéphane Durfort, Nisrine Yahiaoui and Anubhav Gupta

KDIR 2024

Content

- Problem Statement
- DomainKnowledge Pipeline Overview
- DomainKnowledge Modules Annotator
- DomainKnowledge Modules Aggregator
- DomainKnowledge Modules Merger
- Metrics Coverage
- Metrics Mapping
- Metrics Alignment
- Experimental Setup
- Results
- Conclusion

Problem Statement

- Construct a generalized domain-specific knowledge graph from domain text and ontological sources
- Leverage domain-specific vocabulary to find patterns in different domain texts
- Domain of application: Pharmaceuticals
- RQ1: Can domain ontological sources be leveraged as a basis for constructing a knowledge graph from unstructured text?
- RQ2: Can domain ontological sources be used to align knowledge graphs from different sources?

DomainKnowledge Pipeline Overview

 Leverages document parsing, entity-relation triple extraction and knowledge graph construction modules

DomainKnowledge Modules – Annotator

- Module to extract triples from document text based on relevant domain entities
- Triples of the form (subject, relation, object)
- Subject and object entities should be relevant to the domain (e.g., Pharmaceuticals)
- Relations of 2 types:
 - Verbal: relations containing verb as a cornerstone
 - Prepositional: relations built from adpositions (e.g., as, with, for)
- Additional document metadata extracted

- Integrates domain ontologies to validate and ground extracted triples from text
- Relies on UMLS tables
- Table ontologies re-organized into one consolidated knowledge graph based on ontological information for nodes and relations
- AUI, CUI, LUI, SUI and TUI nodes included in knowledge graph construction
- Node relations created to bind ontological nodes hierarchically

- AUI: atom
- CUI: concept
- LUI: term
- SUI: unique string

6

TUI: semantic type

• CUI node has an atom node:
$$CUI \xrightarrow{HAS_AUI} AUI$$

• SUI node has an atom node:
$$SUI \xrightarrow{HAS_AUI} AUI$$

• SUI node has concept node: $SUI \xrightarrow{HAS_CUI} CUI$

• CUI node has semantic type node: $CUI \xrightarrow{HAS_STY} TUI$

DomainKnowledge Modules – Merger

- Integrates extracted triples into ontology knowledge graph
- Point of entry is SUI node
- Comparison based on 2-step string matching:
 - Exact matching (Levenshtein distance)
 - Semantic matching (cosine score on 512-dimensional vector embeddings)
- Triple entities and relations inserted as nodes (NER) and edges in knowledge graph
 - Text node linked to another text node: $NER \xrightarrow{TEXT \perp INK} NER$
 - Text node matched to SUI node: $NER \xrightarrow{HAS_LEXICAL} SUI$

Metrics – Coverage

- 3 metrics defined to evaluate efficacy and pertinence of final graph
- Some formalization:
 - Domain Tokens (DT) = set of entities from input texts with a direct relation to an ontology node
 - Text Tokens (TT) = set of all extracted entities from input texts
 - Coverage = Percentage of domain vocabulary present in input texts

 $\frac{|DT|}{|TT|} \times 100$

(1)

Metrics – Mapping

- Some formalization:
 - Domain Tokens (DT) = set of entities from input texts with a direct relation to an ontology node
 - Concept Tokens (CT) = set of all extracted entities from input texts with same syntactic name as ontology node
 - Mapping = Percentage of entities directly found in the ontology knowledge graph

$$\frac{|CT|}{|DT|} \times 100 \tag{2}$$

Metrics – Alignment

- Some formalization:
 - rNER→TUI = Direct relation from text entity to ontological semantic type
 - rCUI→TUI = Direct relation from concept to ontological semantic type
 - rTUI = Relation from a given source node to an ontological semantic type
 - We define: $rTUI = rNER \rightarrow TUI + rCUI \rightarrow TUI$
 - Alignment = Overlap score between text entities and ontological semantic types

$$\frac{count(r_{NER} \rightarrow TUI)}{count(r_{TUI})} \times 100$$
(3)

Experimental Setup

- 2 experiments conducted on 52 Clinical Study Reports (CSR) documents
- Goal: Finding maximum direct relations between NER and CUI/TUI nodes
- Experiment 1:
 - Group sentences based on sentence scores
 - Extract and consolidate relevant NER and CUI/TUI nodes
 - Promising but computationally heavy
- Experiment 2:
 - Calculate node importance score for NER and ontological nodes
 - Assign weights to relations between nodes based on cumulative node importance scores
 - Graph traversal algorithm to find the maximum total weight between NER and TUI source and target nodes

Results

- Evaluation done against human baseline with domain experts (Clinical Analysts)
- DomainKnowledge beats human baseline in all metrics
- Alignment score weak possibility to improve by enriching domain ontologies
- Gap in score between metrics highlights difficulty in alignment

Method	CVRG	MAPG	ALGT
Baseline	68.00	40.00	10.00
Our Pipeline	76.16	53.67	21.40

Table 3: Comparative results of our methodology.

Conclusion

- Initial results on domain show promise
- RQ1: Can domain ontological sources be leveraged as a basis for constructing a knowledge graph from unstructured text? Ontologies are key to constructing structured knowledge graphs from unstructured sources
- RQ2: Can domain ontological sources be used to align knowledge graphs from different sources? Metrics play an important role in measuring alignment in addition to the right ontological sources
- Alignment remains a hard problem
- Work lays groundwork for extended experimentation on more domains

Thank You

Questions

